Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Applied geography (Sevenoaks, England) ; 2023.
Article in English | EuropePMC | ID: covidwho-2269964

ABSTRACT

The COVID-19 pandemic and subsequent lockdowns have created immeasurable health and economic crises, leading to unprecedented disruptions to world trade. The COVID-19 pandemic shows diverse impacts on different economies that suffer and recover at different rates and degrees. This research aims to evaluate the spatio-temporal heterogeneity of international trade network vulnerabilities in the current crisis to understand the global production resilience and prepare for the future crisis. We applied a series of complex network analysis approaches to the monthly international trade networks at the world, regional, and country scales for the pre- and post- COVID-19 outbreak period. The spatio-temporal patterns indicate that countries and regions with an effective COVID-19 containment such as East Asia show the strongest resilience, especially Mainland China, followed by high-income countries with fast vaccine roll-out (e.g., U.S.), whereas low-income countries (e.g., Africa) show high vulnerability. Our results encourage a comprehensive strategy to enhance international trade resilience when facing future pandemic threats including effective non-pharmaceutical measures, timely development and rollout of vaccines, strong governance capacity, robust healthcare systems, and equality via international cooperation. The overall findings elicit the hidden global trading disruption, recovery, and growth due to the adverse impact of the COVID-19 pandemic.

2.
Appl Geogr ; 154: 102923, 2023 May.
Article in English | MEDLINE | ID: covidwho-2269965

ABSTRACT

The COVID-19 pandemic and subsequent lockdowns have created immeasurable health and economic crises, leading to unprecedented disruptions to world trade. The COVID-19 pandemic shows diverse impacts on different economies that suffer and recover at different rates and degrees. This research aims to evaluate the spatio-temporal heterogeneity of international trade network vulnerabilities in the current crisis to understand the global production resilience and prepare for the future crisis. We applied a series of complex network analysis approaches to the monthly international trade networks at the world, regional, and country scales for the pre- and post- COVID-19 outbreak period. The spatio-temporal patterns indicate that countries and regions with an effective COVID-19 containment such as East Asia show the strongest resilience, especially Mainland China, followed by high-income countries with fast vaccine roll-out (e.g., U.S.), whereas low-income countries (e.g., Africa) show high vulnerability. Our results encourage a comprehensive strategy to enhance international trade resilience when facing future pandemic threats including effective non-pharmaceutical measures, timely development and rollout of vaccines, strong governance capacity, robust healthcare systems, and equality via international cooperation. The overall findings elicit the hidden global trading disruption, recovery, and growth due to the adverse impact of the COVID-19 pandemic.

3.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750603

ABSTRACT

A novel coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China, in December 2019 and has caused over 240,000 cases of COVID-19 worldwide as of March 19, 2020. Previous studies have supported an epidemiological hypothesis that cold and dry environments facilitate the survival and spread of droplet-mediated viral diseases, and warm and humid environments see attenuated viral transmission (e.g., influenza). However, the role of temperature and humidity in transmission of COVID-19 has not yet been established. Here, we examine the spatial variability of the basic reproductive numbers of COVID-19 across provinces and cities in China and show that environmental variables alone cannot explain this variability. Our findings suggest that changes in weather alone (i.e., increase of temperature and humidity as spring and summer months arrive in the Northern Hemisphere) will not necessarily lead to declines in case count without the implementation of extensive public health interventions.

5.
Sci Rep ; 10(1): 17002, 2020 10 12.
Article in English | MEDLINE | ID: covidwho-851311

ABSTRACT

First identified in Wuhan, China, in December 2019, a novel coronavirus (SARS-CoV-2) has affected over 16,800,000 people worldwide as of July 29, 2020 and was declared a pandemic by the World Health Organization on March 11, 2020. Influenza studies have shown that influenza viruses survive longer on surfaces or in droplets in cold and dry air, thus increasing the likelihood of subsequent transmission. A similar hypothesis has been postulated for the transmission of COVID-19, the disease caused by SARS-CoV-2. It is important to propose methodologies to understand the effects of environmental factors on this ongoing outbreak to support decision-making pertaining to disease control. Here, we examine the spatial variability of the basic reproductive numbers of COVID-19 across provinces and cities in China and show that environmental variables alone cannot explain this variability. Our findings suggest that changes in weather (i.e., increase of temperature and humidity as spring and summer months arrive in the Northern Hemisphere) will not necessarily lead to declines in case counts without the implementation of drastic public health interventions.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humidity , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Betacoronavirus , COVID-19 , Cold Temperature , Environment , Hot Temperature , Humans , Pandemics , Population Dynamics , SARS-CoV-2
6.
ArXiv ; 2020 Apr 08.
Article in English | MEDLINE | ID: covidwho-827837

ABSTRACT

We present a timely and novel methodology that combines disease estimates from mechanistic models with digital traces, via interpretable machine-learning methodologies, to reliably forecast COVID-19 activity in Chinese provinces in real-time. Specifically, our method is able to produce stable and accurate forecasts 2 days ahead of current time, and uses as inputs (a) official health reports from Chinese Center Disease for Control and Prevention (China CDC), (b) COVID-19-related internet search activity from Baidu, (c) news media activity reported by Media Cloud, and (d) daily forecasts of COVID-19 activity from GLEAM, an agent-based mechanistic model. Our machine-learning methodology uses a clustering technique that enables the exploitation of geo-spatial synchronicities of COVID-19 activity across Chinese provinces, and a data augmentation technique to deal with the small number of historical disease activity observations, characteristic of emerging outbreaks. Our model's predictive power outperforms a collection of baseline models in 27 out of the 32 Chinese provinces, and could be easily extended to other geographies currently affected by the COVID-19 outbreak to help decision makers.

7.
J Med Internet Res ; 22(8): e20285, 2020 08 17.
Article in English | MEDLINE | ID: covidwho-690972

ABSTRACT

BACKGROUND: The inherent difficulty of identifying and monitoring emerging outbreaks caused by novel pathogens can lead to their rapid spread; and if left unchecked, they may become major public health threats to the planet. The ongoing coronavirus disease (COVID-19) outbreak, which has infected over 2,300,000 individuals and caused over 150,000 deaths, is an example of one of these catastrophic events. OBJECTIVE: We present a timely and novel methodology that combines disease estimates from mechanistic models and digital traces, via interpretable machine learning methodologies, to reliably forecast COVID-19 activity in Chinese provinces in real time. METHODS: Our method uses the following as inputs: (a) official health reports, (b) COVID-19-related internet search activity, (c) news media activity, and (d) daily forecasts of COVID-19 activity from a metapopulation mechanistic model. Our machine learning methodology uses a clustering technique that enables the exploitation of geospatial synchronicities of COVID-19 activity across Chinese provinces and a data augmentation technique to deal with the small number of historical disease observations characteristic of emerging outbreaks. RESULTS: Our model is able to produce stable and accurate forecasts 2 days ahead of the current time and outperforms a collection of baseline models in 27 out of 32 Chinese provinces. CONCLUSIONS: Our methodology could be easily extended to other geographies currently affected by COVID-19 to aid decision makers with monitoring and possibly prevention.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Data Analysis , Forecasting/methods , Machine Learning , Models, Biological , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , COVID-19 , China/epidemiology , Disease Outbreaks , Humans , Internet , Mass Media , Models, Statistical , Pandemics , Public Health/methods
8.
SSRN ; : 3552677, 2020 Mar 12.
Article in English | MEDLINE | ID: covidwho-679361

ABSTRACT

A novel coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China, in December 2019 and has caused over 240,000 cases of COVID-19 worldwide as of March 19, 2020. Previous studies have supported an epidemiological hypothesis that cold and dry environments facilitate the survival and spread of droplet-mediated viral diseases, and warm and humid environments see attenuated viral transmission (e.g., influenza). However, the role of temperature and humidity in transmission of COVID-19 has not yet been established. Here, we examine the spatial variability of the basic reproductive numbers of COVID-19 across provinces and cities in China and show that environmental variables alone cannot explain this variability. Our findings suggest that changes in weather alone (i.e., increase of temperature and humidity as spring and summer months arrive in the Northern Hemisphere) will not necessarily lead to declines in case count without the implementation of extensive public health interventions.

9.
Cancer Discov ; 10(6): 783-791, 2020 06.
Article in English | MEDLINE | ID: covidwho-631598

ABSTRACT

The novel COVID-19 outbreak has affected more than 200 countries and territories as of March 2020. Given that patients with cancer are generally more vulnerable to infections, systematic analysis of diverse cohorts of patients with cancer affected by COVID-19 is needed. We performed a multicenter study including 105 patients with cancer and 536 age-matched noncancer patients confirmed with COVID-19. Our results showed COVID-19 patients with cancer had higher risks in all severe outcomes. Patients with hematologic cancer, lung cancer, or with metastatic cancer (stage IV) had the highest frequency of severe events. Patients with nonmetastatic cancer experienced similar frequencies of severe conditions to those observed in patients without cancer. Patients who received surgery had higher risks of having severe events, whereas patients who underwent only radiotherapy did not demonstrate significant differences in severe events when compared with patients without cancer. These findings indicate that patients with cancer appear more vulnerable to SARS-CoV-2 outbreak. SIGNIFICANCE: Because this is the first large cohort study on this topic, our report will provide much-needed information that will benefit patients with cancer globally. As such, we believe it is extremely important that our study be disseminated widely to alert clinicians and patients.This article is highlighted in the In This Issue feature, p. 747.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Neoplasms , Pneumonia, Viral/therapy , Aged , COVID-19 , China/epidemiology , Cohort Studies , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Disease Outbreaks , Female , Humans , Intensive Care Units , Male , Middle Aged , Neoplasms/complications , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/virology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Respiration, Artificial , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL